**Question 1.** **Asked on :**13 January 2019:01:13:28 PM

Find the median of11,12,2x+2,3x,21,23 where x is the mean of 5,10,3.

*-Added by Akki chauhan*

**Answer:**

We know,

if the number of observation (n) is even

then,

1. first of all find the value at the position

2. and find the value at the position

3. now find the average of two value to get the median .

e.g.,

Given, 11, 12, 14, 18, (x + 2), (x + 4) , 30, 32 , 35 , 41 are in ascending order .

number of terms = 10 {even}

so, median = {(n/2)th + (n/2 + 1) th }/2

24 = (5th + 6th)/2

24 = {(x + 2) + (x + 4)}/2

24 = (x + 3)

x = 21

hence, x = 21

Read more on Brainly.in - https://brainly.in/question/1105920#readmore

*-Answered by Himanshi Verma* On 20 January 2019:05:27:04 PM

**Answer:**

We know,

if the number of observation (n) is even

then,

1. first of all find the value at the position

2. and find the value at the position

3. now find the average of two value to get the median .

e.g.,

Given, 11, 12, 14, 18, (x + 2), (x + 4) , 30, 32 , 35 , 41 are in ascending order .

number of terms = 10 {even}

so, median = {(n/2)th + (n/2 + 1) th }/2

24 = (5th + 6th)/2

24 = {(x + 2) + (x + 4)}/2

24 = (x + 3)

x = 21

hence, x = 21

*-Answered by Jyoti Srivastva * On 30 January 2019:04:32:47 PM

**Answer:**

We know,

if the number of observation (n) is even

then,

1. first of all find the value at the position

2. and find the value at the position

3. now find the average of two value to get the median .

e.g.,

Given, 11, 12, 14, 18, (x + 2), (x + 4) , 30, 32 , 35 , 41 are in ascending order .

number of terms = 10 {even}

so, median = {(n/2)th + (n/2 + 1) th }/2

24 = (5th + 6th)/2

24 = {(x + 2) + (x + 4)}/2

24 = (x + 3)

x = 21

hence, x = 21

*-Answered by Master Purushottam* On 23 August 2019:11:36:15 PM

You can see here all the solutions of this question by various user for **NCERT Solutions**. We hope this try will help you in your study and performance.

This Solution may be usefull for your practice and **CBSE Exams** or All label exams of **secondory examination**. These solutions or answers are user based solution which may be or not may be by expert but you have to use this at your own understanding of your **syllabus**.

Our Expert Team reply with answer soon.

Ask Your Question

* Now You can earn points on every asked question and Answer by you. This points make you a valuable user on this forum. This facility is only available for registered user and educators.

Next moment you answer is ready .... go ahead ...

User Earned Point: Select

Sponsers link