Asked/Added Questions From NCERT:


Question 1. Asked on :29 March 2019:04:53:40 PM

 Use Euclid’s division algorithm to find the HCF of :

(i) 135 and 225 (ii) 196 and 38220 (iii) 867 and 255

-Added by Rohit rajput Mathematics » Real Numbers

Answer:

Himanshi Verma

 (i)135 and 225

  a = 225, b = 135               {Greatest number is ‘a’ and smallest number is ‘b’}

 Using Euclid’s division algorithm

  a = bq + r (then)

  225 = 135 ×1 + 90

 135 = 90 ×1 + 45

 90 = 45 × 2 + 0                  {when we get r=0, our computing get stopped}

 b = 45 {b is HCF}

Hence:  HCF = 45

 (ii)196 and 38220

 a = 38220, b = 196          {Greatest number is ‘a’ and smallest number is ‘b’}

 Using Euclid’s division algorithm

 a = bq + r (then)

 38220= 196 ×195 + 0 {when we get r=0, our computing get stopped}

 b = 196 {b is HCF}

Hence:  HCF = 196

(iii)867 and 255

a = 867, b = 255               {Greatest number is ‘a’ and smallest number is ‘b’}

Using Euclid’s division algorithm

a = bq + r (then)

38220= 196 ×195 + 0 {when we get r=0, our computing get stopped}

b = 196 {b is HCF}

Hence:  HCF = 196


-Answered by Himanshi Verma On 29 March 2019:04:55:16 PM


 

You can see here all the solutions of this question by various user for NCERT Solutions. We hope this try will help you in your study and performance.

This Solution may be usefull for your practice and CBSE Exams or All label exams of secondory examination. These solutions or answers are user based solution which may be or not may be by expert but you have to use this at your own understanding of your syllabus.

 

 

Search your Question Or Keywords

 

 

All Tags by Subjects: